The Crystal Structure of $\mathbf{H f}_{3} \mathbf{C u}_{8}$ and $\mathbf{Z r}_{3} \mathbf{C u}_{8}$

By Lars Bsenko
Institute of Chemistry, University of Uppsala, Box 531, S-751 21 Uppsala, Sweden

(Received 6 January 1976; accepted 23 February 1976)

Abstract

The crystal structure of the intermetallic phase $\mathrm{Hf}_{3} \mathrm{Cu}_{8}$ has been determined from three-dimensional single-crystal X-ray diffractometer data. The space group is Pnma, and the unit cell, of dimensions $a=7 \cdot 8113$ (5), $b=8 \cdot 1014$ (6), $c=9.9470$ (7) $\AA, V=629.60 \AA^{3}$, contains four formula units. Full-matrix least-squares refinement gave a conventional $R(F)$ value of 0.053 . Two non-equivalent sets of Hf atoms occur in the structure, one with a coordination number of 13 and the other of 14. The six non-equivalent sets of Cu atoms have coordination numbers ranging from 11 to 13 . X-ray powder diffraction data show that $\mathrm{Zr}_{3} \mathrm{Cu}_{8}$ is isostructural with $\mathrm{Hf}_{3} \mathrm{Cu}_{8}$.

Introduction

The first observation of a peritectic phase at about $70 \mathrm{at} . \% \mathrm{Cu}$ in the $\mathrm{Zr}-\mathrm{Cu}$ system was made by Lundin, McPherson \& Hansen (1953). The phase was tentatively assigned the formula $\mathrm{Zr}_{2} \mathrm{Cu}_{5}$ and was thought to be formed by a reaction between the melt and a phase of composition ZrCu_{3} or ZrCu_{4}. Using electron-probe microanalysis, Donachie (1963-1964) stated that the composition of the congruently melting phase is ZrCu_{4}. Perry \& Hugi (1972) also found a phase at the composition ZrCu_{4} and reported the formation of the peritectic phase $\mathrm{Zr}_{2} \mathrm{Cu}_{5}$. Later, Gabathuler, White \& Parthé (1975) and Bsenko (1975), independently found that the phase denoted ZrCu_{4} possessed the $\mathrm{GdAg}_{3.6}$ type of structure determined by Bailey \& Kline (1971), and hence had the ideal composition $\mathrm{Zr}_{14} \mathrm{Cu}_{51}$. Bsenko (1975) showed, by indexing the powder pattern, that the peritectic phase is orthorhombic. The $\mathrm{Hf}-\mathrm{Cu}$ system was investigated by Markiv, Petkov, Storozhenko, Ivanchenko \& Gorskii (1974), who found two intermediate phases in the region $70-75$ at. $\% \mathrm{Cu}$, denoted $\mathrm{Hf}_{2} \mathrm{Cu}_{5}$ and $\mathrm{HfCu}_{3} . \mathrm{Hf}_{2} \mathrm{Cu}_{5}$ was formed at $990^{\circ} \mathrm{C}$ by the reaction: liq. $+\mathrm{HfCu}_{3}=\mathrm{Hf}_{2} \mathrm{Cu}_{5}$. Perry (1974) found a phase denoted HfCu_{4}, which was later shown to be isostructural with $\mathrm{GdAg}_{3 \cdot 6}$ (Gabathuler, White \& Parthé, 1975; Bsenko, 1975). It is probable that the phase denoted HfCu_{3} by Markiv et al. is identical with $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$. A phase with orthorhombic symmetry and forming peritectically was found by Bsenko (1975). The present investigation was undertaken in order to establish the structure of this peritectic phase.

Experimental

By arc-melting turnings of zirconium and hafnium metal (Koch-Light, Colnbrook, England; Zr of purity 99.9% containing less than 0.03% oxygen and zonerefined Hf containing $3 \% \mathrm{Zr}$) with copper (HCOKOF, certified grade copper, min. 99.99%), two alloys with the nominal compositions $\mathrm{Hf}_{0.28} \mathrm{Cu}_{0.72}$ and $\mathrm{Zr}_{0.28} \mathrm{Cu}_{0.72}$
were prepared. The melting was carried out on a water-cooled copper hearth under a purified argon atmosphere, with a non-consumable tungsten electrode. The alloy buttons were turned upside down and remelted to insure homogeneity. The weight loss was less than $0 \cdot 5 \%$.
The samples were wrapped in tantalum foil and annealed in sealed and evacuated silica tubes for 500 h at $850^{\circ} \mathrm{C}$. After quenching in water the surfaces of the samples were wet-ground on a carborundum disc and polished with alumina. Etching with a mixture consisting of 10 parts of $\mathrm{HF}, 20$ parts of HNO_{3}, and 70 parts of $\mathrm{H}_{2} \mathrm{O}$ by volume, revealed the microstructure of the surface. Metallographic examination showed that the alloys were nearly single-phase.
The samples were crushed and small fragments were examined in a Weissenberg camera. All fragments turned out to be polycrystalline.
Assuming that the peritectically formed phase contained about $72 \mathrm{at} . \%$ copper, an alloy of nominal composition $\mathrm{Hf}_{0.30} \mathrm{Cu}_{0.70}$ was prepared and heattreated as described earlier. This specimen was placed in a ZrO_{2} crucible, inside an evacuated and sealed silica tube. The tube was held at a temperature of $1025^{\circ} \mathrm{C}$ for 24 h . After quenching in water, a metallographic examination of the polished and etched surface showed primary grown crystals, indicating that the annealing temperature was above the eutectic isotherm.
The alloy was crushed and a small fragment proved to be a single crystal when examined in a Weissenberg camera. The diffraction symmetry and the systematic absences of the reflexions indicated that the space group was Pnma or $P_{n} 2_{1} a$. Diffractometric intensity data were collected on a four-circle Stoe-Philips X-ray diffractometer controlled by a PDP8/I computer. The $\omega / 2 \theta$ scan technique was employed and graphitemonochromatized Mo radiation was used ($\lambda=0.71069$ $\AA)$. The 800,040 and 006 reflexions were used as control reflexions, and during the data collection these were checked every 20th reflexion scanned. The differences in intensity of these reference reflexions were within the limits of the random statistical fluctuations.
F_{o}^{2} and $\sigma_{c}\left(F_{o}^{2}\right)$ values were obtained from the integrated peak intensities by applying corrections for background, Lorentz and polarization effects and absorption, assuming the monochromator to be ideally imperfect. A linear absorption factor of $682 \mathrm{~cm}^{-1}$ was applied in computing absorption corrections. The crys-
tal was of irregular shape, and was approximated with six boundary planes to a polyhedron with dimensions of the order of $0.06 \times 0.03 \times 0.01 \mathrm{~mm}$ for the purpose of making absorption corrections. The transmission factors were found to vary from 0.213 to 0.520 . Data collection was carried out to $\sin \theta / \lambda=0.587 \AA^{-1}$, and

Table 1. Final structural parameters for $\mathrm{Hf}_{3} \mathrm{Cu}_{8}$
E.s.d.'s are in units of the least significant digit. Positional parameters are $\times 10^{5}$, thermal $\times 10^{4}$. Anisotropic thermal parameters are in the form $\exp \left[-\left(\beta_{11} h^{2}+\ldots+2 \beta_{12} h k+\ldots\right)\right]$.

		x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
$\mathrm{Hf}(1)$	$8(d)$	$6255(8)$	$44594(7)$	$14022(6)$	$21(1)$	$22(1)$	$11(1)$	$-1(1)$	$-1(1)$	$-1(1)$
$\mathrm{Hf}(2)$	$4(c)$	$45964(12)$	$\frac{1}{4}$	$4670(9)$	$25(1)$	$29(1)$	$12(1)$	0	$2(1)$	0
$\mathrm{Cu}(1)$	$8(d)$	$37912(25)$	$57601(23)$	$16013(18)$	$22(2)$	$30(2)$	$14(1)$	$-3(2)$	$-2(1)$	$2(1)$
$\mathrm{Cu}(2)$	$8(d)$	$19893(23)$	$49897(21)$	$40644(18)$	$26(2)$	$19(2)$	$16(1)$	$1(1)$	$-2(1)$	$1(1)$
$\mathrm{Cu}(3)$	$4(c)$	$28548(35)$	$\frac{1}{4}$	$27349(25)$	$24(4)$	$32(3)$	$8(2)$	0	$-1(1)$	0
$\mathrm{Cu}(4)$	$4(c)$	$11655(35)$	$\frac{1}{4}$	$90329(26)$	$18(3)$	$23(3)$	$16(2)$	0	$-5(2)$	0
$\mathrm{Cu}(5)$	$4(c)$	$36932(35)$	$\frac{4}{4}$	$76548(25)$	$23(3)$	$20(3)$	$9(2)$	0	$-3(2)$	0
$\mathrm{Cu}(6)$	$4(c)$	$32283(33)$	$\frac{1}{4}$	$51676(25)$	$16(3)$	$20(3)$	$9(2)$	0	$-1(2)$	0

Table 2. Observed and calculated X-ray structure factors for $\mathrm{Hf}_{3} \mathrm{Cu}_{8}$
The four columns are, in order: k, l, F_{o} and F_{c}. Asterisks mark reflexions not included in the final refinement.

M-

 ©
 มัaicy

-
 ตร์

 \qquad

 \qquad

a total number of 1734 independent reflexions were recorded. Of these, 1323 were in excess of $2 \sigma_{c}\left(F_{o}^{2}\right)$ and were used in the final refinement.

From the Weissenberg photographs preliminary cell dimensions were obtained, and these were used in indexing the X -ray powder patterns for $\mathrm{Hf}_{0.28} \mathrm{Cu}_{02.7}$
and $\mathrm{Zr}_{0.28} \mathrm{Cu}_{0.28}$. The X -ray powder photographs were taken with a Guinier-Hägg type focusing camera (Philips XDC 700), using zone-refined silicon ($a=$ $5 \cdot 43088 \AA$) as internal calibration standard and $\mathrm{Cr} \mathrm{K} \alpha_{1}$ radiation $(\lambda=2 \cdot 28975 \AA)$. A least-squares refinement using the local program CELNE (Lundgren, 1974)

Table 3. Comparison of calculated and observed Q values and intensities for $\mathrm{Zr}_{3} \mathrm{Cu}_{8}$ $Q=1 / d^{2}, d$ is the interplanar spacing in \AA. Calculated intensities less than 1.0 are omitted.
$\left.\begin{array}{lccccccccc}h k l & Q_{c}\left(\times 10^{5}\right) & Q_{o}\left(\times 10^{5}\right) & I_{c} & I_{o} & h k l & Q_{c}\left(\times 10^{5}\right) & Q_{o}\left(\times 10^{5}\right) & I_{c} & I_{o} \\ 011 & 2506 & 2497 & 2 \cdot 1 & 0 \cdot 5 & 133 & 24165 & - & 3 \cdot 0 & - \\ 121 & 8629 & 8615 & 2 \cdot 9 & 3 \cdot 9 & 322 & 24555 & 24553 & 38 \cdot 9 & 45 \cdot 3 \\ 022 & 10022 & - & 1 \cdot 6 & - & 400 & 25836 & 25819 & 3 \cdot 0 & 15 \cdot 2 \\ 103 & 10639 & 10634 & 4 \cdot 7 & 7 \cdot 1 & 105 & 26681 & - & 1 \cdot 9 & - \\ 122 & 11637 & - & 1 \cdot 1 & - & 401 & 26839 & - & 1 \cdot 3 & - \\ 221 & 13473 & 13466 & 4 \cdot 6 & 4 \cdot 2 & 410 & 27339 & 27354 & 4 \cdot 0 & - \\ 004 & 16043 & 16038 & 7 \cdot 6 & 10 \cdot 5 & 042 & 28057 & - & 2 \cdot 5 & - \\ 222 & 16481 & 16476 & 19 \cdot 1 & 20 \cdot 0 & 115 & 28184 & 28190 & 9 \cdot 0 & 11 \cdot 0 \\ 213 & 16986 & 16989 & 15 \cdot 4 \\ 311 & 17038 & 17049 & 15 \cdot 7\end{array}\right\}$

$012345 \AA$

Fig. 1. The two sections of the structure of $\mathrm{Hf}_{3} \mathrm{Cu}_{8}$ projected on (010).
gave the cell parameters. The X-ray powder photograph of the sample $\mathrm{Zr}_{0.28} \mathrm{Cu}_{0.72}$ was measured in an automatic film scanner SAAB model 2, and integrated intensities were obtained following the procedure of Malmros \& Werner (1973). Some of the reflexions could not be resolved and for these the sums of the integrated intensities were obtained.

Determination and refinement of the $\mathbf{H f}_{3} \mathrm{Cu}_{8}$ structure

At the start of the structure determination, the unitcell content of the crystal was estimated in the following manner. From a plot of X-ray densities against composition, based on crystallographic data for Hf from Russell (1953), for $\mathrm{Hf}_{2} \mathrm{Cu}$ from Nevitt \& Downey (1962), for $\mathrm{Hf}_{7} \mathrm{Cu}_{10}$ and $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$ from Bsenko (1975) and for Cu from Frohnmeyer \& Glocker (1953), theoretical densities were obtained for alloys containing $71-73 \mathrm{at} . \% \mathrm{Cu}$. This range should include the composition of the crystal concerned. An examination of the various possibilities yielded a cell content of 12 Hf atoms and 32 Cu atoms as the only alternative compatible with a structure of $P_{n} 2_{1} a$ or Pnma symmetry without disorder or vacancies. A threedimensional Patterson synthesis was computed, and the largest maxima could be interpreted in terms of 12 Hf atoms situated in one $8(d)$ and one $4(c)$ position in space group Pnma. From this starting point, a series of Fourier difference syntheses successively revealed the positions of the Cu atoms.
The full-matrix least-squares program UPALS (Lundgren, 1974) was used for refining the structure. The function minimized in the least-squares program was $w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $w^{-1}=\sigma_{c}^{2}\left(F_{o}\right)+\left(0 \cdot 04\left|F_{o}\right|\right)^{2}$, with $\sigma_{c}\left(F_{o}\right)$ based on counting statistics. Atomic scattering factors for Cu were taken from Hanson, Herman, Lea \& Skillman (1964) and for Hf from Cromer \& Waber (1965). Dispersion correction factors were taken from Cromer \& Liberman (1970). No extinction correction was made. The parameters varied were: one scale factor, 19 atomic positional parameters and 38 anisotropic temperature factors. In the last cycle the changes in parameters were all smaller than 0.01σ. The conventional agreement index $R(F)$ was 0.053 for 1323 reflexions with F_{o}^{2} larger than $2 \sigma_{c}\left(F_{o}^{2}\right)$, and including zero-weight data an $R(F)$ value of 0.076 was obtained for all 1734 reflexions. The positional and the anisotropic thermal parameters are given in Table 1. The anisotropies in the thermal parameters result from the difficulty in applying a proper absorption correction to the irregular crystal. The calculated structure factors are compared with the observed structure factors in Table 2.

The structure of $\mathbf{Z r}_{3} \mathrm{Cu}_{8}$

With the positional and thermal parameters obtained for $\mathrm{Hf}_{3} \mathrm{Cu}_{8}$, the powder intensities of the reflexions for $\mathrm{Zr}_{3} \mathrm{Cu}_{8}$ were calculated. Atomic scattering factors
for Zr were taken from Cromer \& Waber (1965). The intensities were obtained with the formula $I_{c}=$ $g \operatorname{Lp}\left|F^{2}\right| A$ in which g, Lp, F and A represent the multiplicity factor, the Lorentz-polarization factor, the structure factor and the absorption factor for the film respectively. The calculated and observed intensities on a relative scale from $0-100$ are given in Table 3. The reliability index $R=\sum\left|I_{o}-I_{c}\right| / \sum I_{c}$ is $0 \cdot 22$.

Description of the structure

The structure of $\mathrm{Hf}_{3} \mathrm{Cu}_{8}$ can be described in terms of layers of atoms parallel to (010) and stacked in a

Table 4. Interatomic distances shorter than $3.5 \AA$ in $\mathrm{Hf}_{3} \mathrm{Cu}_{8}$
E.s.d.'s are in units of the least significant digit.

$\mathrm{Hf}(1)-\mathrm{Hf}(1)$	1	3.083 (1) \AA A	$\mathrm{Cu}(3)-\mathrm{Hf}(1)$	2	2.703 (2)
Hf(1)	1	$3 \cdot 175$ (1)	$\mathrm{Hf}(1)$	2	2.819 (2)
$\mathrm{Cu}(1)$	1	2.666 (2)	Hf(2)	1	$2 \cdot 633$ (3)
$\mathrm{Cu}(1)$	1	2.697 (2)	Hf(2)	1	$3 \cdot 112$ (3)
$\mathrm{Cu}(2)$	1	2.886 (2)	$\mathrm{Cu}(1)$	2	$2 \cdot 964$ (2)
$\mathrm{Cu}(2)$	1	2.910 (2)	$\mathrm{Cu}(2)$	2	2.506 (2)
$\mathrm{Cu}(2)$	1	3.014 (2)	$\mathrm{Cu}(6)$	1	2.438 (3)
$\mathrm{Cu}(3)$	1	2.703 (2)			
$\mathrm{Cu}(3)$	1	2.819 (2)	$\mathrm{Cu}(4)-\mathrm{Hf}(1)$	2	2.866 (1)
$\mathrm{Cu}(4)$	1	$2 \cdot 866$ (1)	$\mathrm{Hf}(1)$	2	2.875 (2)
$\mathrm{Cu}(4)$	1	$2 \cdot 875$ (2)	$\mathrm{Hf}(2)$	1	3.036 (3)
$\mathrm{Cu}(5)$	1	$2 \cdot 811$ (1)	$\mathrm{Cu}(1)$	2	2.798 (3)
$\mathrm{Cu}(6)$	1	$2 \cdot 895$ (1)	$\mathrm{Cu}(2)$	2	2.492 (2)
$\mathrm{Cu}(6)$	1	2.909 (2)	$\mathrm{Cu}(5)$	1	2.403 (4)
			$\mathrm{Cu}(5)$	1	$2 \cdot 558$ (4)
$\mathrm{Hf}(2)-\mathrm{Cu}(1)$	2	2.941 (2)	$\mathrm{Cu}(6)$	1	$2 \cdot 430$ (4)
$\mathrm{Cu}(1)$	2	2.793 (2)			
$\mathrm{Cu}(2)$	2	2.760 (2)	$\mathrm{Cu}(5)-\mathrm{Hf}(1)$	2	$2 \cdot 811$ (1)
$\mathrm{Cu}(2)$	2	2.789 (2)	Hf(2)	1	$2 \cdot 886$ (3)
$\mathrm{Cu}(3)$	1	2.633 (3)	$\mathrm{Cu}(1)$	2	2.528 (3)
$\mathrm{Cu}(3)$	1	$3 \cdot 112$ (3)	$\mathrm{Cu}(1)$	2	2.617 (3)
$\mathrm{Cu}(4)$	1	3.036 (3)	$\mathrm{Cu}(2)$	2	2.527 (2)
$\mathrm{Cu}(5)$	1	$2 \cdot 886$ (3)	$\mathrm{Cu}(4)$	1	2.403 (4)
$\mathrm{Cu}(6)$	1	$2 \cdot 906$ (3)	$\mathrm{Cu}(4)$	1	2.558 (4)
$\mathrm{Cu}(1)-\mathrm{Hf}(1)$	1	$2 \cdot 666$ (2)	$\mathrm{Cu}(6)$	1	2.501 (3)
Hf(1)	1	2.697 (2)	$\mathrm{Cu}(6)-\mathrm{Hf}(1)$	2	$2 \cdot 895$ (1)
Hf(2)	1	2.793 (2)	Hf(1)	2	2.909 (2)
Hf(2)	1	2.941 (2)	$\mathrm{Hf}(2)$		$2 \cdot 906$ (3)
$\mathrm{Cu}(1)$	1	$2 \cdot 817$ (4)	$\mathrm{Cu}(1)$	2	2.552 (3)
$\mathrm{Cu}(2)$	1	$2 \cdot 658$ (3)	$\mathrm{Cu}(2)$	2	$2 \cdot 492$ (2)
$\mathrm{Cu}(2)$	1	$2 \cdot 668$ (2)	$\mathrm{Cu}(3)$	1	$2 \cdot 438$ (3)
$\mathrm{Cu}(2)$	1	2.895 (2)	$\mathrm{Cu}(4)$	1	$2 \cdot 430$ (4)
$\mathrm{Cu}(3)$	1	2.964 (2)	$\mathrm{Cu}(5)$	1	$2 \cdot 501$ (3)
$\mathrm{Cu}(4)$	1	2.798 (3)			
$\mathrm{Cu}(5)$	1	2.617 (3)			
$\mathrm{Cu}(5)$	1	$2 \cdot 528$ (3)			
$\mathrm{Cu}(6)$	1	$2 \cdot 552$ (3)			
$\mathrm{Cu}(2)-\mathrm{Hf}(1)$	1	$2 \cdot 910$ (2)			
Hf(1)	1	$2 \cdot 886$ (2)			
Hf(1)	1	3.014 (2)			
Hf(2)	1	$2 \cdot 760$ (2)			
$\mathrm{Hf}(2)$	1	2.789 (2)			
$\mathrm{Cu}(1)$	1	$2 \cdot 658$ (3)			
$\mathrm{Cu}(1)$	1	2.668 (2)			
$\mathrm{Cu}(1)$		$2 \cdot 895$ (2)			
$\mathrm{Cu}(3)$		$2 \cdot 506$ (2)			
$\mathrm{Cu}(4)$	1	2.492 (2)			
$\mathrm{Cu}(5)$	1	$2 \cdot 527$ (2)			
$\mathrm{Cu}(6)$	1	$2 \cdot 492$ (2)			

sequence repeated after four layers. The atoms in the fourfold positions are situated on the mirror planes at $y=\frac{1}{4}$ and $y=\frac{3}{4}$, forming planar layers. The atoms in the eightfold positions, with approximate y coordinates of 0 and $\frac{1}{2}$, form puckered layers sandwiched between the mirror planes. A projection on (010) of the puckered layer near $y=0$ together with the planar layer at $y=\frac{1}{4}$ is shown in Fig. 1. Fig. 1 also shows a projection of the puckered layer near $y=\frac{1}{2}$ together with the planar layer at $y=\frac{3}{4}$.

The various interatomic distances in $\mathrm{Hf}_{3} \mathrm{Cu}_{8}$ are given in Table 4. Only distances shorter than $3.5 \AA$ are included.

With the exception of the eightfold $\mathrm{Hf}(1)$ and $\mathrm{Cu}(1)$ atoms, which have, respectively, one $\operatorname{Hf}(1)$ and one $\mathrm{Cu}(1)$ contact across a mirror plane, the atoms in one layer have near neighbours only within the same layer and in the two adjacent layers. The $\operatorname{Hf}(1)$ atoms are coordinated to two other $\mathrm{Hf}(1)$ at 3.083 and $3 \cdot 175$ \AA and to 12 Cu atoms, while the $\operatorname{Hf}(2)$ atoms have 13 Cu neighbours. The $\mathrm{Hf}-\mathrm{Cu}$ distances are between $2 \cdot 633$ and $3 \cdot 112 \AA$. The coordination numbers for the six non-equivalent types of Cu atoms vary from 11 to 13 , with $\mathrm{Cu}-\mathrm{Cu}$ distances from 2.403 to $2.964 \AA$.

The coordination of the atoms in $\mathrm{Hf}_{3} \mathrm{Cu}_{8}$ may be compared with that in $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$ (Gabathuler, White \& Parthé, 1975). In $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$ there is only one Hf-Hf contact at a distance of $3 \cdot 106 \AA$. The coordination numbers for the three non-equivalent Hf atoms are 16, 14 and 14, while the coordination numbers for the Cu atoms vary from 11 to 13 . The $\mathrm{Hf}-\mathrm{Cu}$ and $\mathrm{Cu}-\mathrm{Cu}$ distances range from 2.660 to $2 \cdot 974 \AA$, and from 2.413 to $3.269 \AA$ respectively. Apart from the larger number of neighbours to the Hf atoms in $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$, the coordination numbers and interatomic
distances are evidently quite similar in $\mathrm{Hf}_{14} \mathrm{Cu}_{51}$ and $\mathrm{Hf}_{3} \mathrm{Cu}_{8}$.

The author is deeply indebted to Professor Stig Rundquist for valuable discussions and comments. Financial support from the Swedish Natural Science Research Council is gratefully acknowledged.

References

Bailey, D. M. \& Kline, G. R. (1971). Acta Cryst. B27, 650-653.
Bsenko, L. (1975). J. Less-Common. Met. 40, 365-366.
Cromer, D. T. \& Liberman, D. (1970). J. Chem. Phys. 53, 1891-1898.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104-109.
Donachie, M. J. (1963-1964). J. Inst. Met. 92, 180.
Frohnmeyer, G. \& Glocker, R. (1953). Acta Cryst. 6, 19-24.
Gabathuler, J.-P., White, P. \& Parthé, E. (1975). Acta Cryst. B31, 608-610.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Lundgren, J.-O. (1974). Crystallographic Computer Programs. UUIC-B13-4-01. Univ. of Uppsala, Sweden.
Lundin, C. E., McPherson, D. J. \& Hansen, M. (1953). Trans. AIME, 197, 273-278.
Malmros, G. \& Werner, P.-E. (1973). Acta Chem. Scand. 27, 493-502.
Markiv, V. Ya., Petkov, V. V., Storozhenko, A. I., Ivanchenko, V. G. \& Gorskii, V. V. (1974). Izv. Akad. Nauk SSSR, Met. 2, 209-213.
Nevitt, M. V. \& Downey, I. W. (1962). Trans. AIME, 224, 195-196.
Perry, A. J. (1974). Mater. Sci. Eng. 13, 57-62.
Perry, A. J. \& Hugi, W. (1972). J. Inst. Met. 100, 378-380.
Russell, R. B. (1953). J. Appl. Phys. 24, 232-233.

